Earth as a Temperature Controller: Part I (2023)

Read...

In the last section you learned that seasons (that is, yearly temperature trends that occur over a large region of the earth) are created by the tilt of the earth's axis and that the amount of solar radiation impinging on a surface depends on the angle at which it strikes the surface. If we look at slightly smaller regions over shorter time spans, we'll discover that characteristics of the earth itself act as temperature controllers. Specifically, the average surface air temperature across the earth's surface depends on location. The "big three" controllers of temperature based on location are latitude, proximity to bodies of water, and altitude (we'll deal with the first two in this section).

Latitude

In the last section, we discussed the importance of sun angle on determining the seasons. A more direct sun angle in the northern hemisphere causes the warmth of summer, while simultaneously, a lower sun angle in the southern hemisphere brings less solar heating power and the chill of winter. But, the earth is (approximately) a sphere, and its surface is curved. The curvature of the earth's surface means all points in a given hemisphere are not receiving incoming solar radiation at the same angle, regardless of season.

The maximum height that the sun reaches at local "solar noon" (the time of day when the sun is highest in the sky) on any given day, and thus the maximum angle at which the radiation strikes the earth, depends on the date at the latitude of your location. For example, consider two locations -- Bismarck, North Dakota (located at 46.5 degrees North latitude) and Oklahoma City, Oklahoma (located at 35.2 degrees North latitude). Clearly, Bismarck's latitude is greater than Oklahoma City's (Bismarck is farther from the equator). Using the NOAA Solar Calculator (it's a neat tool, if you want to check it out) along with some math which I'll skip here, I calculated the peak sun angles and corresponding percentages of the maximum possible solar radiation (often called the "direct beam") for December 21 (near the winter solstice) and June 21 (near the summer solstice) at Bismarck and Oklahoma City. The results are in the table below:

Peak Sun Angles and Corresponding Percentages of the Direct Beam for Bismarck and Oklahoma City on December 21 and June 21
City

Peak Sun Angle

(December 21)

% of the Direct Beam

(December 21)

Peak Sun Angle

(June 21)

% of the Direct Beam

(June 21)

Bismarck19.8 degrees34 percent66.7 degrees92 percent
Oklahoma City31.1 degrees52 percent78.0 degrees98 percent

You should take a couple of important messages from these numbers. First, the peak sun angle at the higher-latitude city (Bismarck) is lower than at Oklahoma City near both solstices. As you know from the last section, a lower sun angle means Bismarck consistently receives less intense solar radiation compared to Oklahoma City, ignoring clouds of course. To confirm, note that Bismarck's percentage of possible solar radiation compared to the "direct beam" is lower near both solstices.

(Video) What is global circulation? | Part One | Differential heating

Furthermore, the numbers in this table should match your experiences. Perhaps you've noticed that during the winter, the sun at local "solar noon" isn't as high in the sky as it is in the summer. These numbers support that observation: at both cities, the peak sun angle is much larger (meaning the sun is higher in the sky) near the summer solstice than near the winter solstice.

So, Oklahoma City consistently receives more radiation than Bismarck throughout the year because the sun's angle is always higher in Oklahoma City. How does this fact impact average temperatures? Check out the graph below, which compares daily average high temperatures at the two cities.

Earth as a Temperature Controller: Part I (1)

(Video) The Global Thermostat - A Crazy Megaproject That Just Might Work

The annual variation of average daily high temperatures at Oklahoma City, OK (green curve) and Bismarck, ND (purple curve). The difference in latitude is the primary factor in the temperature difference between the two cities.

Credit: Data supplied by the Earth System Research Laboratory

As we would expect, Oklahoma City is, on average, warmer than Bismarck, because Oklahoma City consistently receives more solar radiation. But, also notice that Bismarck has a much wider range in average temperatures than does Oklahoma City. Average high temperatures in Bismarck increase from about 20 degrees Fahrenheit in January to about 85 degrees Fahrenheit in July (a range of 65 degrees Fahrenheit), while Oklahoma City's average high temperatures increase from about 44 degrees Fahrenheit in January to 95 degrees Fahrenheit in July (a range of 51 degrees Fahrenheit). That's because the higher-latitude city (Bismarck) experiences a greater variation in solar radiation between winter and summer (34 percent to 92 percent of the sun's direct beam) than Oklahoma City (which receives 52 percent to 98 percent of the sun's direct beam during the year). So, a location's latitude impacts not only its average temperatures, but also the range in temperatures during the year. We can generalize our findings from Bismarck and Oklahoma City into the important "lesson learned" below:

Lesson learned: All else being equal, the larger a location's latitude, the lower its average temperatures will be and the more extreme the variation between summer and winter season temperatures.

(Video) 5.3 Earth’s Temperature Pattern

Proximity to Bodies of Water

To begin our discussion on the effect of large bodies of water on local temperatures, consider this color-coded temperature map (constructed from NASA satellite data). The top map indicates the average daytime air temperatures in January 1979, and the middle map represents the average nighttime temperatures during the same month (on both maps, brown represents the hottest regions and temperatures decrease from red to yellow to light blue to dark blue, which represents the coldest regions).

The bottom map represents the difference between daytime and nighttime temperatures during January 1979. The whitish appearance of Earth's oceans means that there was little or no change between daytime and nighttime temperatures over the course of the month. This map tells us that water is particularly slow to warm or cool -- much slower than land. That's because water has a heat capacity that is three times that of land, which means that water requires about three times as much energy compared to a similarly sized volume of land to achieve the same temperature increase. Because water, with its relatively high heat capacity, is relatively slow to warm or cool, we might expect locations that are near large bodies of water to have smaller seasonal temperature changes, and indeed that's the case. For what it's worth, locations near large bodies of water tend to have smaller diurnal (daily) temperature changes, too, because of the moderating influence of water.

If you examine the average temperatures for a west-coast city such as San Francisco, where prevailing winds blow from the ocean most of the time, you can observe the moderating influence of the Pacific which limits the variation in temperature from day to day and month to month. Indeed, note the relative flatness of the plot of daytime average high temperatures at San Francisco compared to St. Louis, Missouri (both cities lie at approximately the same latitude). The flatness in San Francisco's trace of daily average highs indicates a smaller annual variation in temperature. Indeed, average daily highs during summer at San Francisco are not nearly as high as St. Louis. During winter, however, the average daily highs in San Francisco are higher than St. Louis, again due to the moderating influence of the ocean. Practically speaking, the Pacific Ocean keeps San Francisco from getting hot in summer and cold in winter. Also note that the average high temperatures at San Francisco peak later in the year (September) compared to St. Louis (where they peak in July), because the high heat capacity of water keeps ocean temperatures slowly rising through the summer into September.

Earth as a Temperature Controller: Part I (2)

The annual variation of mean maximum temperatures at San Francisco, California, and St Louis, Missouri. Note that the annual variation at San Francisco is smaller than St. Louis, indicating the moderating effects of the Pacific Ocean.

Credit: Data supplied by the Earth System Research Laboratory

(Video) Temperature controls

Oceans do not own a monopoly on moderating temperatures. To a lesser extent, large lakes, rivers, and seas modify air temperatures. For example, the moderating effects of Lake Ontario and the Finger Lakes transform western New York into a favorable place to grow grapes for making wine. Because large bodies of water cool much more slowly than land, milder air overlying the Finger Lakes delays the first frost (courtesy: PlantMaps.com) of autumn, extending the growing season and allowing grapes to adequately ripen before harvest (note in the image the later average date for the first frost in the region south of Lake Ontario). We say that bodies of water cause temperatures to "lag" those farther away from the water because air temperatures surrounding large bodies of water will stay milder in the fall and winter, but will also be slow to warm during the spring and early summer (because the nearby water will be slow to warm).

(Video) Earth Science: Lecture 17 - Atmospheric Temperature Controls

I should quickly point out that this effect is greater for locations "downwind" of the large body of water. For example, in the United States, the moderating influence of the Pacific Ocean over the course of individual days and through the entire year is more dramatic for West Coast cities than the moderating influence of the Atlantic Ocean is for cities on the East Coast. Why? Weather systems at these latitudes tend to move from west to east, and winds commonly blow onshore from the Pacific Ocean, ushering the air over the ocean into West Coast cities. Along the East Coast, winds sometimes blow onshore from the Atlantic, but not as often, which lessens its moderating influence, on average.

Lesson Learned: All else being equal, locations near large bodies of water will tend to have smaller seasonal temperature variations. The moderating influence of the body of water (thanks to its high heat capacity) will tend to keep such locations milder in the winter, and cooler in the summer compared to "land-locked" locations.

Other characteristics of the earth's surface beyond simply land versus water can alter local heating characteristics (and impact local temperatures), too. Urban landscapes absorb radiation differently than rural landscapes, etc., but we'll talk more about some of these finer details later on. For now, we have to leave the surface of the earth and start thinking about elevation. It's time to get vertical! Read on.

FAQs

What controls the temperature on the Earth? ›

Water vapor and clouds are the major contributors to Earth's greenhouse effect, but a new atmosphere-ocean climate modeling study shows that the planet's temperature ultimately depends on the atmospheric level of carbon dioxide.

What is the controller for temperature? ›

Introduction to Temperature Controllers

The simplest example of a temperature controller is a common thermostat found in homes. For instance, a hot water heater uses a thermostat to control the temperature of the water and maintain it at a certain commanded temperature. Temperature controllers are also used in ovens.

What is the importance of temperature in Earth? ›

Temperature plays an important part in shaping weather patterns, guiding the life cycle of various organisms and maintaining ocean levels. Shifting the temperature a couple of degrees can throw an entire ecosystem into chaos. Most plants have a range of temperatures in which they will flourish.

What are the four primary controls on global temperature? ›

Temperature is controlled by four factors: latitude, altitude, cloud cover and land-water heating differences.

What are the 3 factors that control earth's temperature? ›

The temperature characteristics of a region are influenced by natural factors such as latitude, elevation and the presence of ocean currents.

How does earth maintain a temperature balance? ›

The earth-atmosphere energy balance is achieved as the energy received from the Sun balances the energy lost by the Earth back into space. In this way, the Earth maintains a stable average temperature and therefore a stable climate.

Which part is responsible for temperature control? ›

Our internal body temperature is regulated by a part of our brain called the hypothalamus. The hypothalamus checks our current temperature and compares it with the normal temperature of about 37°C. If our temperature is too low, the hypothalamus makes sure that the body generates and maintains heat.

What are the 5 controls of temperature? ›

The controls of temperature are:
  • Latitude (angle of Sun) - Chapter 2.
  • Differential heating of land and water (they heat up/cool down differently)
  • Ocean Currents.
  • Altitude.
  • Geographic position.
  • Cloud cover & albedo.

What is a device that regulates temperature? ›

thermostat, device to detect temperature changes for the purpose of maintaining the temperature of an enclosed area essentially constant. In a system including relays, valves, switches, etc., the thermostat generates signals, usually electrical, when the temperature exceeds or falls below the desired value.

What factors does the temperature of the Earth depend on? ›

The temperature of the Earth depends on many factors, including the concentration of greenhouse gases such as water vapour, methane and carbon dioxide. The Earth's temperature also depends on the rates at which light radiation and infrared radiation are: absorbed by the Earth's surface and atmosphere.

What is temperature earth science? ›

Temperature is the degree of hotness or coldness of an object.

What has life on Earth to do with appropriate temperature? ›

By keeping the Earth's average temperature around 14°C, the Earth then presents favorable conditions for the existence of life. This natural process is called the greenhouse effect. Therefore, if it did not exist, there would be no development of living beings.

What is the single most important control on temperature? ›

Insolation (solar radiation from the sun that is intercepted by the earth) is the single most important influence on temperature. In the troposphere, temperatures decrease with increasing altitude and the density of the atmosphere decreases. reduced.

What are the 7 controls of climate? ›

These include latitude, elevation, nearby water, ocean currents, topography, vegetation, and prevailing winds.

What is the major controlling factor for the Earth's heating and cooling system? ›

The Sun is the primary source of energy that influences any planet's temperature, including Earth.

How does nature regulate temperature? ›

So to intentionally maintain a specific internal temperature, living things have to manage how much heat they're losing or gaining. To do this, they alter their exposed surface area. How much a creature's temperature changes is proportional to its exposed surface area.

How is temperature controlled in space? ›

A system called the Active Thermal Control System (ATCS) keeps the temperature inside the ISS comfortable for the astronauts. The ATCS has three subsystems: one for heat collection, one for heat transportation, and one for heat rejection. Heat collection happens through several heat exchangers around the ISS.

What is the most important part of a temperature monitoring system? ›

Thermocouples, thermistors, and RTDs are the three most important types of temperature monitoring systems and your selection should be based on your purpose.

What are the two most important factors in temperature? ›

The two most important factors in the climate of an area are temperature and precipitation. The yearly average temperature of the area is obviously important, but the yearly range in temperature is also important. Some areas have a much larger range between highest and lowest temperature than other areas.

What are the 5 main factors that regulate weather and climate? ›

Hint:The five main factors which affect the climate of a region are Latitude, Altitude, relief, currents and winds and distance from the sea.

What are the 6 major climate controls? ›

There are six major controls of the climate of any place. They are: latitude, altitude, pressure and wind system, distance from the sea, ocean currents and relief features.

What elements control climate? ›

These elements are solar radiation, temperature, humidity, precipitation (type, frequency, and amount), atmospheric pressure, and wind (speed and direction).

What keeps the Earth from getting hot? ›

Earth's atmosphere keeps much of the Sun's energy from escaping into space. This process, called the greenhouse effect, keeps the planet warm enough for life to exist. The atmosphere allows about half of the Sun's heat energy (50%) to reach Earth's surface.

What keeps the Earth at warm temperature? ›

Earth's surface warms up in the sunlight. At night, Earth's surface cools, releasing heat back into the air. But some of the heat is trapped by the greenhouse gases in the atmosphere. That's what keeps our Earth a warm and cozy 58 degrees Fahrenheit (14 degrees Celsius), on average.

What keeps the Earth from getting too cold? ›

The greenhouse effect is the way in which heat is trapped close to Earth's surface by “greenhouse gases.” These heat-trapping gases can be thought of as a blanket wrapped around Earth, keeping the planet toastier than it would be without them.

What causes the Earth to cool down? ›

The tilt in the axis of the Earth is called its 'obliquity'. This angle changes with time, and over about 41 000 years it moves from 22.1° to 24.5° and back again. When the angle increases the summers become warmer and the winters become colder.

How does the atmosphere regulate temperature? ›

The atmosphere moderates Earth's temperature through heat-trapping greenhouse gases, mainly carbon dioxide (CO2). But the ocean is also crucial to climate. It acts as a control knob, absorbing or releasing carbon and heat in response to changes in the atmosphere.

What absorbs the most heat on Earth? ›

The ocean absorbs excess heat from Earth's system, acting to balance the excess heat from rising global temperatures. Scientists have determined that the ocean absorbs more than 90 percent of the excess heat, which is attributed to greenhouse gas emissions.

What is heating of Earth called? ›

A. Global warming. No worries!

What keeps Earth's temperature stable and cool *? ›

Our atmosphere keeps the Earth's temperature stable. It lets just the right amount of sunlight through, so the Earth doesn't get too hot in the summer. It also it keeps warmth from escaping so we don't get too cold in the winter. In this way the atmosphere acts like a greenhouse.

Will the Earth eventually cool down? ›

One day, the core will eventually cool down and become solid. Scientists believe that when that happens, Earth will become similar to Mars, affecting every planetary process as we know it. Recently, scientists estimated that Earth's interior is cooling faster than expected.

Does the Earth get colder the deeper you go? ›

In contrast, the Earth gets hotter and hotter at depth primarily because the energy of radioactive decay is leaking outwards from the core of the planet. While this geothermal energy is transferred to ocean water along the seafloor, the effect is so small that it's immeasurable by direct means.

Is it possible for the Earth to freeze? ›

At least twice between 750 and 600 million years ago, Earth fell into a deep freeze. Because the Cryogenian Period events occurred during a longer geologic era known as the Neoproterozoic Era, the deep freezes are sometimes referred to as the Neoproterozoic Snowball Earths.

Videos

1. Differential Controller Adjustment
(John Canivan)
2. SunEarth SETRO301 - Main Menu
(SunEarth)
3. Dr. Pierre Latour: Engineering Earth's Thermostat with CO2? | EU2014
(ThunderboltsProject)
4. Temperature control and ventilation Part 1
(Miss Sookdeo)
5. 3.3a Temperature Controls
(Kevin Brennan)
6. 5.2 Principal Temperature Controls
(Dr. No Knows Weather)
Top Articles
Latest Posts
Article information

Author: Fredrick Kertzmann

Last Updated: 03/13/2023

Views: 5277

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Fredrick Kertzmann

Birthday: 2000-04-29

Address: Apt. 203 613 Huels Gateway, Ralphtown, LA 40204

Phone: +2135150832870

Job: Regional Design Producer

Hobby: Nordic skating, Lacemaking, Mountain biking, Rowing, Gardening, Water sports, role-playing games

Introduction: My name is Fredrick Kertzmann, I am a gleaming, encouraging, inexpensive, thankful, tender, quaint, precious person who loves writing and wants to share my knowledge and understanding with you.